Get your own Python server Result Size: 625 x 565
x
 
import numpy
from sklearn import metrics
actual = numpy.random.binomial(1,.9,size = 1000)
predicted = numpy.random.binomial(1,.9,size = 1000)
Accuracy = metrics.accuracy_score(actual, predicted)
Precision = metrics.precision_score(actual, predicted)
Sensitivity_recall = metrics.recall_score(actual, predicted)
Specificity = metrics.recall_score(actual, predicted, pos_label=0)
F1_score = metrics.f1_score(actual, predicted)
#metrics:
print({"Accuracy":Accuracy,"Precision":Precision,"Sensitivity_recall":Sensitivity_recall,"Specificity":Specificity,"F1_score":F1_score})
{'Accuracy': 0.827, 'Precision': 0.8908489525909592, 'Sensitivity_recall': 0.9160997732426304, 'Specificity': 0.16101694915254236, 'F1_score': 0.903297931805478}