Get your own Python server Result Size: 625 x 565
x
 
import pandas
import scipy
import numpy
from sklearn.preprocessing import Normalizer
fileurl = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
names = ['septal_length','sepal_with','petal_length','pedal_width','class']
data = pandas.read_csv(fileurl, names=names)
array = data.values
# input/output component separation
X = array[:,0:4]
Y = array[:,4]
scaler = Normalizer().fit(X)
normalizedX = scaler.transform(X)
# summarize transformed data
numpy.set_printoptions(precision=2)
print(normalizedX[0:10,:])
#All rows now have a maximum length of 1.
[[0.8  0.55 0.22 0.03]
 [0.83 0.51 0.24 0.03]
 [0.81 0.55 0.22 0.03]
 [0.8  0.54 0.26 0.03]
 [0.79 0.57 0.22 0.03]
 [0.78 0.57 0.25 0.06]
 [0.78 0.58 0.24 0.05]
 [0.8  0.55 0.24 0.03]
 [0.81 0.53 0.26 0.04]
 [0.82 0.52 0.25 0.02]]