import pandas
import scipy
import numpy
from sklearn.preprocessing import Normalizer
fileurl = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
names = ['septal_length','sepal_with','petal_length','pedal_width','class']
data = pandas.read_csv(fileurl, names=names)
array = data.values
# input/output component separation
X = array[:,0:4]
Y = array[:,4]
scaler = Normalizer().fit(X)
normalizedX = scaler.transform(X)
# summarize transformed data
numpy.set_printoptions(precision=2)
print(normalizedX[0:10,:])
#All rows now have a maximum length of 1.