import pandas
import scipy
import numpy
from sklearn.preprocessing import MinMaxScaler
fileurl = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
names = ['sepal_length','sepal_width','petal_length','petal_width','class']
data = pandas.read_csv(fileurl, names=names)
array = data.values
# input/output component separation
X = array[:,0:4]
Y = array[:,4]
#Dataset is scaled to 0 and 3
scaler = MinMaxScaler(feature_range=(0, 3))
rescaledX = scaler.fit_transform(X)
# summarize transformed data
numpy.set_printoptions(precision=2)
print(rescaledX[0:5,:])