Get your own Python server Result Size: 625 x 565
x
 
import pandas
import scipy
import numpy
from sklearn.preprocessing import StandardScaler
fileurl = 'https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data'
names = ['septal_length','sepal_with','petal_length','pedal_width','class']
data = pandas.read_csv(fileurl, names=names)
array = data.values
# input/output component separation
X = array[:,0:4]
Y = array[:,4]
scaler = StandardScaler().fit(X)
standardX = scaler.transform(X)
# summarize transformed data
numpy.set_printoptions(precision=2)
print(standardX[0:20,:])
#The Iris data is transformed to a standard deviation of 1 and a mean of 0.
[[-0.9   1.03 -1.34 -1.31]
 [-1.14 -0.12 -1.34 -1.31]
 [-1.39  0.34 -1.4  -1.31]
 [-1.51  0.11 -1.28 -1.31]
 [-1.02  1.26 -1.34 -1.31]
 [-0.54  1.96 -1.17 -1.05]
 [-1.51  0.8  -1.34 -1.18]
 [-1.02  0.8  -1.28 -1.31]
 [-1.75 -0.36 -1.34 -1.31]
 [-1.14  0.11 -1.28 -1.44]
 [-0.54  1.49 -1.28 -1.31]
 [-1.26  0.8  -1.23 -1.31]
 [-1.26 -0.12 -1.34 -1.44]
 [-1.87  0.12 -1.51 -1.44]
 [-0.05  2.19 -1.46 -1.31]
 [-0.17  3.11 -1.28 -1.05]
 [-0.54  1.96 -1.4  -1.05]
 [-0.9   1.03 -1.34 -1.18]
 [-0.17  1.73 -1.17 -1.18]
 [-0.9   1.73 -1.28 -1.18]]