Tutorials References Exercises Videos Menu
Website Get Certified Pro NEW

Pandas DataFrame product() Method

❮ DataFrame Reference


Example

Return the product of each column:

import pandas as pd

data = [[10, 18, 11], [13, 15, 8], [9, 20, 3]]

df = pd.DataFrame(data)

print(df.product())
Try it Yourself »

Definition and Usage

The product() method multiplies all values in each column and returns the product for each column.

By specifying the column axis (axis='columns'), the product() method searches column-wise and returns the product of each row.

The product() method does the same as the prod() method.


Syntax

dataframe.product(axis, skipna, level, numeric_only, min_count, kwargs)

Parameters

The axis, skipna, level, numeric_only, min_count, parameters are keyword arguments.

Parameter Value Description
axis 0
1
'index'
'columns'
Optional, Which axis to check, default 0.
skip_na True
False
Optional, default True. Set to False if the result should NOT skip NULL values
level Number
level name
Optional, default None. Specifies which level ( in a hierarchical multi index) to check along
numeric_only None
True
False
Optional. Specifies whether to only check numeric values. Default None
min_count None
True
False
Optional. Specifies the minimum number of values that needs to be present to perform the action. Default 0
kwargs   Optional, keyword arguments. These arguments has no effect, but could be accepted by a NumPy function

 Return Value

A Series with the products.

If the level argument is specified, this method will return a DataFrame object.

This function does NOT make changes to the original DataFrame object.


❮ DataFrame Reference