THE WORLD'S LARGEST WEB DEVELOPER SITE

Python Tutorial

Python HOME Python Intro Python Get Started Python Syntax Python Comments Python Variables Python Data Types Python Numbers Python Casting Python Strings Python Booleans Python Operators Python Lists Python Tuples Python Sets Python Dictionaries Python If...Else Python While Loops Python For Loops Python Functions Python Lambda Python Arrays Python Classes/Objects Python Inheritance Python Iterators Python Scope Python Modules Python Dates Python JSON Python RegEx Python PIP Python Try...Except Python User Input Python String Formatting

File Handling

Python File Handling Python Read Files Python Write/Create Files Python Delete Files

Python NumPy

NumPy Intro NumPy Getting Started NumPy Creating Arrays NumPy Array Indexing NumPy Array Slicing NumPy Data Types NumPy Copy vs View NumPy Array Shape NumPy Array Reshape NumPy Array Iterating NumPy Array Join NumPy Array Split NumPy Array Search NumPy Array Sort NumPy Array Filter NumPy Random

Machine Learning

Getting Started Mean Median Mode Standard Deviation Percentile Data Distribution Normal Data Distribution Scatter Plot Linear Regression Polynomial Regression Multiple Regression Scale Train/Test Decision Tree

Python MySQL

MySQL Get Started MySQL Create Database MySQL Create Table MySQL Insert MySQL Select MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join

Python MongoDB

MongoDB Get Started MongoDB Create Database MongoDB Create Collection MongoDB Insert MongoDB Find MongoDB Query MongoDB Sort MongoDB Delete MongoDB Drop Collection MongoDB Update MongoDB Limit

Python Reference

Python Overview Python Built-in Functions Python String Methods Python List Methods Python Dictionary Methods Python Tuple Methods Python Set Methods Python File Methods Python Keywords Python Exceptions Python Glossary

Module Reference

Random Module Requests Module Math Module cMath Module

Python How To

Remove List Duplicates Reverse a String Add Two Numbers

Python Examples

Python Examples Python Exercises Python Quiz Python Certificate

Normal (Gaussian) Distribution


Normal Distribution

The Normal Distribution is one of the most important distributions.

It is also called the Gaussian Distribution after the German mathematician Carl Friedrich Gauss.

It fits the probability distribution of many events, eg. IQ Scores, Heartbeat etc.

Use the random.normal() method to get a Normal Data Distribution.

It has three parameters:

loc - (Mean) where the peak of the bell exists.

scale - (Standard Deviation) how flat the graph distribution should be.

size - The shape of the returned array.

Example

Generate a random normal distribution of size 2x3:

from numpy import random

x = random.normal(size=(2, 3))

print(x)
Try it Yourself »

Example

Generate a random normal distribution of size 2x3 with mean at 1 and standard deviation of 2:

from numpy import random

x = random.normal(loc=1, scale=2, size=(2, 3))

print(x)
Try it Yourself »

Visualization of Normal Distribution

Example

from numpy import random
import matplotlib.pyplot as plt
import seaborn as sns

sns.distplot(random.normal(size=1000), hist=False)

plt.show()

Result

Try it Yourself »

Note: The curve of a Normal Distribution is also known as the Bell Curve because of the bell-shaped curve.