THE WORLD'S LARGEST WEB DEVELOPER SITE

Python Tutorial

Python HOME Python Intro Python Get Started Python Syntax Python Comments Python Variables Python Data Types Python Numbers Python Casting Python Strings Python Booleans Python Operators Python Lists Python Tuples Python Sets Python Dictionaries Python If...Else Python While Loops Python For Loops Python Functions Python Lambda Python Arrays Python Classes/Objects Python Inheritance Python Iterators Python Scope Python Modules Python Dates Python Math Python JSON Python RegEx Python PIP Python Try...Except Python User Input Python String Formatting

File Handling

Python File Handling Python Read Files Python Write/Create Files Python Delete Files

Python NumPy

NumPy Intro NumPy Getting Started NumPy Creating Arrays NumPy Array Indexing NumPy Array Slicing NumPy Data Types NumPy Copy vs View NumPy Array Shape NumPy Array Reshape NumPy Array Iterating NumPy Array Join NumPy Array Split NumPy Array Search NumPy Array Sort NumPy Array Filter NumPy Random NumPy ufunc

Python SciPy

SciPy Intro SciPy Getting Started SciPy Constants SciPy Optimizers SciPy Sparse Data SciPy Graphs SciPy Spatial Data SciPy Matlab Arrays SciPy Interpolation SciPy Significance Tests

Machine Learning

Getting Started Mean Median Mode Standard Deviation Percentile Data Distribution Normal Data Distribution Scatter Plot Linear Regression Polynomial Regression Multiple Regression Scale Train/Test Decision Tree

Python MySQL

MySQL Get Started MySQL Create Database MySQL Create Table MySQL Insert MySQL Select MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join

Python MongoDB

MongoDB Get Started MongoDB Create Database MongoDB Create Collection MongoDB Insert MongoDB Find MongoDB Query MongoDB Sort MongoDB Delete MongoDB Drop Collection MongoDB Update MongoDB Limit

Python Reference

Python Overview Python Built-in Functions Python String Methods Python List Methods Python Dictionary Methods Python Tuple Methods Python Set Methods Python File Methods Python Keywords Python Exceptions Python Glossary

Module Reference

Random Module Requests Module Statistics Module Math Module cMath Module

Python How To

Remove List Duplicates Reverse a String Add Two Numbers

Python Examples

Python Examples Python Compiler Python Exercises Python Quiz Python Certificate

Simple Arithmetic


Simple Arithmetic

You could use arithmetic operators + - * / directly between NumPy arrays, but this section discusses an extension of the same where we have functions that can take any array-like objects e.g. lists, tuples etc. and perform arithmetic conditionally.

Arithmetic Conditionally: means that we can define conditions where the arithmetic operation should happen.

All of the discussed arithmetic functions take a where parameter in which we can specify that condition.


Addition

The add() function sums the content of two arrays, and return the results in a new array.

Example

Add the values in arr1 to the values in arr2:

import numpy as np

arr1 = np.array([10, 11, 12, 13, 14, 15])
arr2 = np.array([20, 21, 22, 23, 24, 25])

newarr = np.add(arr1, arr2)

print(newarr)
Try it Yourself »

The example above will return [30 32 34 36 38 40] which is the sums of 10+20, 11+21, 12+22 etc.


Subtraction

The subtract() function subtracts the values from one array with the values from another array, and return the results in a new array.

Example

Subtract the values in arr2 from the values in arr1:

import numpy as np

arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([20, 21, 22, 23, 24, 25])

newarr = np.subtract(arr1, arr2)

print(newarr)
Try it Yourself »

The example above will return [-10 -1 8 17 26 35] which is the result of 10-20, 20-21, 30-22 etc.


Multiplication

The multiply() function multiplies the values from one array with the values from another array, and return the results in a new array.

Example

Multiply the values in arr1 with the values in arr2:

import numpy as np

arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([20, 21, 22, 23, 24, 25])

newarr = np.multiply(arr1, arr2)

print(newarr)
Try it Yourself »

The example above will return [200 420 660 920 1200 1500] which is the result of 10*20, 20*21, 30*22 etc.


Division

The divide() function divides the values from one array with the values from another array, and return the results in a new array.

Example

Divide the values in arr1 with the values in arr2:

import numpy as np

arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([3, 5, 10, 8, 2, 33])

newarr = np.divide(arr1, arr2)

print(newarr)
Try it Yourself »

The example above will return [3.33333333 4. 3. 5. 25. 1.81818182] which is the result of 10/3, 20/5, 30/10 etc.


Power

The power() function rises the values from the first array to the power of the values of the second array, and return the results in a new array.

Example

Raise the valules in arr1 to the power of values in arr2:

import numpy as np

arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([3, 5, 6, 8, 2, 33])

newarr = np.power(arr1, arr2)

print(newarr)
Try it Yourself »

The example above will return [1000 3200000 729000000 6553600000000 2500 0] which is the result of 10*10*10, 20*20*20*20*20, 30*30*30*30*30*30 etc.


Remainder

Both the mod() and the remainder() functions return the remainder of the values in the first array corresponding to the values in the second array, and return the results in a new array.

Example

Return the remainders:

import numpy as np

arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([3, 7, 9, 8, 2, 33])

newarr = np.mod(arr1, arr2)

print(newarr)
Try it Yourself »

The example above will return [1 6 3 0 0 27] which is the remainders when you divide 10 with 3 (10%3), 20 with 7 (20%7) 30 with 9 (30%9) etc.

You get the same result when using the remainder() function:

Example

Return the remainders:

import numpy as np

arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([3, 7, 9, 8, 2, 33])

newarr = np.remainder(arr1, arr2)

print(newarr)
Try it Yourself »

Quotient and Mod

The divmod() function return both the quotient and the the mod. The return value is two arrays, the first array contains the quotient and second array contains the mod.

Example

Return the quotient and mod:

import numpy as np

arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([3, 7, 9, 8, 2, 33])

newarr = np.divmod(arr1, arr2)

print(newarr)
Try it Yourself »

The example above will return:
(array([3, 2, 3, 5, 25, 1]), array([1, 6, 3, 0, 0, 27]))
The first array represents the quotients, (the integer value when you divide 10 with 3, 20 with 7, 30 with 9 etc.
The second array represents the remainders of the same divisions.


Absolute Values

Both the absolute() and the abs() functions functions do the same absolute operation element-wise but we should use absolute() to avoid confusion with python's inbuilt math.abs()

Example

Return the quotient and mod:

import numpy as np

arr = np.array([-1, -2, 1, 2, 3, -4])

newarr = np.absolute(arr)

print(newarr)
Try it Yourself »

The example above will return [1 2 1 2 3 4].