THE WORLD'S LARGEST WEB DEVELOPER SITE

# Pandas - Removing Duplicates

## Discovering Duplicates

Duplicate rows are rows that have been registered more than one time.

```
Duration          Date  Pulse  Maxpulse  Calories
0         60  '2020/12/01'    110       130     409.1
1         60  '2020/12/02'    117       145     479.0
2         60  '2020/12/03'    103       135     340.0
3         45  '2020/12/04'    109       175     282.4
4         45  '2020/12/05'    117       148     406.0
5         60  '2020/12/06'    102       127     300.0
6         60  '2020/12/07'    110       136     374.0
7        450  '2020/12/08'    104       134     253.3
8         30  '2020/12/09'    109       133     195.1
9         60  '2020/12/10'     98       124     269.0
10        60  '2020/12/11'    103       147     329.3
11        60  '2020/12/12'    100       120     250.7
12        60  '2020/12/12'    100       120     250.7
13        60  '2020/12/13'    106       128     345.3
14        60  '2020/12/14'    104       132     379.3
15        60  '2020/12/15'     98       123     275.0
16        60  '2020/12/16'     98       120     215.2
17        60  '2020/12/17'    100       120     300.0
18        45  '2020/12/18'     90       112       NaN
19        60  '2020/12/19'    103       123     323.0
20        45  '2020/12/20'     97       125     243.0
21        60  '2020/12/21'    108       131     364.2
22        45           NaN    100       119     282.0
23        60  '2020/12/23'    130       101     300.0
24        45  '2020/12/24'    105       132     246.0
25        60  '2020/12/25'    102       126     334.5
26        60      20201226    100       120     250.0
27        60  '2020/12/27'     92       118     241.0
28        60  '2020/12/28'    103       132       NaN
29        60  '2020/12/29'    100       132     280.0
30        60  '2020/12/30'    102       129     380.3
31        60  '2020/12/31'     92       115     243.0

```

By taking a look at our test data set, we can assume that row 11 and 12 are duplicates.

To discover duplicates, we can use the `duplicated()` method.

The `duplicated()` method returns a Boolean values for each row:

### Example

Returns `True` for every row that is a duplicate, othwerwise `False`:

print(df.duplicated())
Try it Yourself »

## Removing Duplicates

To remove duplicates, use the `drop_duplicates()` method.

### Example

Remove all duplicates:

df.drop_duplicates(inplace = True)
Try it Yourself »

Remember: The `(inplace = True)` will make sure that the method does NOT return a new DataFrame, but it will remove all duplicates from the original DataFrame.