Python Tutorial

Python HOME Python Intro Python Get Started Python Syntax Python Comments Python Variables Python Data Types Python Numbers Python Casting Python Strings Python Booleans Python Operators Python Lists Python Tuples Python Sets Python Dictionaries Python If...Else Python While Loops Python For Loops Python Functions Python Lambda Python Arrays Python Classes/Objects Python Inheritance Python Iterators Python Scope Python Modules Python Dates Python Math Python JSON Python RegEx Python PIP Python Try...Except Python User Input Python String Formatting

File Handling

Python File Handling Python Read Files Python Write/Create Files Python Delete Files

Python NumPy

NumPy Intro NumPy Getting Started NumPy Creating Arrays NumPy Array Indexing NumPy Array Slicing NumPy Data Types NumPy Copy vs View NumPy Array Shape NumPy Array Reshape NumPy Array Iterating NumPy Array Join NumPy Array Split NumPy Array Search NumPy Array Sort NumPy Array Filter NumPy Random NumPy ufunc

Python Pandas

Pandas Tutorial Pandas Getting Started Pandas Series Pandas DataFrames Pandas Read CSV Pandas Read JSON Pandas Analyzing Data Pandas Cleaning Data Pandas Correlations Pandas Plotting

Python Matplotlib

Matplotlib Intro Matplotlib Get Started Matplotlib Pyplot Matplotlib Plotting Matplotlib Markers Matplotlib Line Matplotlib Subplots Matplotlib Scatter Matplotlib Bars Matplotlib Histograms Matplotlib Pie Charts

Python SciPy

SciPy Intro SciPy Getting Started SciPy Constants SciPy Optimizers SciPy Sparse Data SciPy Graphs SciPy Spatial Data SciPy Matlab Arrays SciPy Interpolation SciPy Significance Tests

Machine Learning

Getting Started Mean Median Mode Standard Deviation Percentile Data Distribution Normal Data Distribution Scatter Plot Linear Regression Polynomial Regression Multiple Regression Scale Train/Test Decision Tree

Python MySQL

MySQL Get Started MySQL Create Database MySQL Create Table MySQL Insert MySQL Select MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join

Python MongoDB

MongoDB Get Started MongoDB Create Database MongoDB Create Collection MongoDB Insert MongoDB Find MongoDB Query MongoDB Sort MongoDB Delete MongoDB Drop Collection MongoDB Update MongoDB Limit

Python Reference

Python Overview Python Built-in Functions Python String Methods Python List Methods Python Dictionary Methods Python Tuple Methods Python Set Methods Python File Methods Python Keywords Python Exceptions Python Glossary

Module Reference

Random Module Requests Module Statistics Module Math Module cMath Module

Python How To

Remove List Duplicates Reverse a String Add Two Numbers

Python Examples

Python Examples Python Compiler Python Exercises Python Quiz Python Certificate

Pandas - Plotting


Pandas uses the plot() method to create diagrams.

Pythons uses Pyplot, a submodule of the Matplotlib library to visualize the diagram on the screen.

Read more about Matplotlib in our Matplotlib Tutorial.


Import pyplot from Matplotlib and visualize our DataFrame:

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('data.csv')

Try it Yourself »

The examples in this page uses a CSV file called: 'data.csv'.

Download data.csv or Open data.csv

Scatter Plot

Specify that you want a scatter plot with the kind argument:

kind = 'scatter'

A scatter plot needs an x- and a y-axis.

In the example below we will use "Duration" for the x-axis and "Calories" for the y-axis.

Include the x and y arguments like this:

x = 'Duration', y = 'Calories'


import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('data.csv')

df.plot(kind = 'scatter', x = 'Duration', y = 'Calories')


Try it Yourself »

Remember: In the previous example, we learned that the correlation between "Duration" and "Calories" was 0.922721, and we conluded with the fact that higher duration means more calories burned.

By looking at the scatterplot, I will agree.

Let's create another scatterplot, where there is a bad relationship between the columns, like "Duration" and "Maxpulse", with the correlation 0.009403:


A scatterplot where there are no relationship between the columns:

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv('data.csv')

df.plot(kind = 'scatter', x = 'Duration', y = 'Maxpulse')


Try it Yourself »


Use the kind argument to specify that you want a histogram:

kind = 'hist'

A histogram needs only one column.

A histogram shows us the frequency of each interval, e.g. how many workouts lasted between 50 and 60 minutes?

In the example below we will use the "Duration" column to create the histogram:


df["Duration"].plot(kind = 'hist')


Try it Yourself »

Note: The histogram tells us that there were over 100 workouts that lasted between 50 and 60 minutes.