Menu
×
   ❮   
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY AWS CYBERSECURITY DATA SCIENCE
     ❯   

Statistics - Describing Data


Describing data is typically the second step of statistical analysis after gathering data.


Descriptive Statistics

The information (data) from your sample or population can be visualized with graphs or summarized by numbers. This will show key information in a simpler way than just looking at raw data. It can help us understand how the data is distributed.

Graphs can visually show the data distribution.

Examples of graphs include:

Some graphs have a close connection to numerical summary statistics. Calculating those gives us the basis of these graphs.

For example, a box plot visually shows the quartiles of a data distribution.

Quartiles are the data split into four equal size parts, or quarters. A quartile is one type of summary statistics.

Summary statistics

Summary statistics take a large amount of information and sums it up in a few key values.

Numbers are calculated from the data which also describe the shape of the distributions. These are individual 'statistics'.

Some important examples are:

Note: Descriptive statistics is often presented as a part of statistical analysis.

Descriptive statistics is also useful for guiding further analysis, giving insight into the data, and finding what is worth investigating more closely.


W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2024 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.