Menu
×
   ❮     
HTML CSS JAVASCRIPT SQL PYTHON JAVA PHP HOW TO W3.CSS C C++ C# BOOTSTRAP REACT MYSQL JQUERY EXCEL XML DJANGO NUMPY PANDAS NODEJS R TYPESCRIPT ANGULAR GIT POSTGRESQL MONGODB ASP AI GO KOTLIN SASS VUE DSA GEN AI SCIPY AWS CYBERSECURITY DATA SCIENCE
     ❯   

C++ Tutorial

C++ HOME C++ Intro C++ Get Started C++ Syntax C++ Output C++ Comments C++ Variables C++ User Input C++ Data Types C++ Operators C++ Strings C++ Math C++ Booleans C++ Conditions C++ Switch C++ While Loop C++ For Loop C++ Break/Continue C++ Arrays C++ Structures C++ Enums C++ References C++ Pointers

C++ Functions

C++ Functions C++ Function Parameters C++ Function Overloading C++ Recursion

C++ Classes

C++ OOP C++ Classes/Objects C++ Class Methods C++ Constructors C++ Access Specifiers C++ Encapsulation C++ Inheritance C++ Polymorphism C++ Files C++ Exceptions

C++ How To

Add Two Numbers

C++ Reference

C++ Reference C++ Keywords C++ <iostream> C++ <fstream> C++ <cmath> C++ <string> C++ <cstring> C++ <ctime>

C++ Examples

C++ Examples C++ Compiler C++ Exercises C++ Quiz C++ Certificate


C++ Polymorphism


Polymorphism

Polymorphism means "many forms", and it occurs when we have many classes that are related to each other by inheritance.

Like we specified in the previous chapter; Inheritance lets us inherit attributes and methods from another class. Polymorphism uses those methods to perform different tasks. This allows us to perform a single action in different ways.

For example, think of a base class called Animal that has a method called animalSound(). Derived classes of Animals could be Pigs, Cats, Dogs, Birds - And they also have their own implementation of an animal sound (the pig oinks, and the cat meows, etc.):

Example

// Base class
class Animal {
  public:
    void animalSound() {
      cout << "The animal makes a sound \n";
    }
};

// Derived class
class Pig : public Animal {
  public:
    void animalSound() {
      cout << "The pig says: wee wee \n";
    }
};

// Derived class
class Dog : public Animal {
  public:
    void animalSound() {
      cout << "The dog says: bow wow \n";
    }
};

Remember from the Inheritance chapter that we use the : symbol to inherit from a class.

Now we can create Pig and Dog objects and override the animalSound() method:

Example

// Base class
class Animal {
  public:
    void animalSound() {
      cout << "The animal makes a sound \n";
    }
};

// Derived class
class Pig : public Animal {
  public:
    void animalSound() {
      cout << "The pig says: wee wee \n";
    }
};

// Derived class
class Dog : public Animal {
  public:
    void animalSound() {
      cout << "The dog says: bow wow \n";
    }
};

int main() {
  Animal myAnimal;
  Pig myPig;
  Dog myDog;

  myAnimal.animalSound();
  myPig.animalSound();
  myDog.animalSound();
  return 0;
}
Try it Yourself »

Why And When To Use "Inheritance" and "Polymorphism"?

- It is useful for code reusability: reuse attributes and methods of an existing class when you create a new class.


×

Contact Sales

If you want to use W3Schools services as an educational institution, team or enterprise, send us an e-mail:
sales@w3schools.com

Report Error

If you want to report an error, or if you want to make a suggestion, send us an e-mail:
help@w3schools.com

W3Schools is optimized for learning and training. Examples might be simplified to improve reading and learning. Tutorials, references, and examples are constantly reviewed to avoid errors, but we cannot warrant full correctness of all content. While using W3Schools, you agree to have read and accepted our terms of use, cookie and privacy policy.

Copyright 1999-2024 by Refsnes Data. All Rights Reserved. W3Schools is Powered by W3.CSS.