Tutorials References Exercises Menu
Paid Courses

TensorFlow Tutorial

TensorFlow.js is a JavaScript framework to define and operate on Tensors

TensorFlow Tensors have 3 properties:

  • Type
  • Rank
  • Shape

Using TensorFlow

To use TensorFlow.js, add the following script tag to your HTML file(s):

Example

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@3.6.0/dist/tf.min.js"></script>

To make sure you always use the latest version, use this:

Example 2

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>

Tensors

The central data unit in TensorFlow.js is the Tensor.

A Tensor is much the same as an multidimensional array.

A Tensor has the following properties:

PropertyDescription
dtypeThe data type
rankThe number of dimensions
shapeThe size of each dimension

Creating a Tensor

A Tensor can be created from any N-dimensional array:

Example 1

const tensorA = tf.tensor([[1, 2], [3, 4]]);

Try it Yourself »

Example 2

const tensorA = tf.tensor([[1, 2], [3, 4], [5, 6]]);

Try it Yourself »


Tensor Shape

A Tensor can also be created from an array and a shape parameter:

Example1

const shape = [2, 2];
const tensorA = tf.tensor([1, 2, 3, 4], shape);

Try it Yourself »

Example2

const tensorA = tf.tensor([1, 2, 3, 4], [2, 2]);

Try it Yourself »

Example3

const tensorA = tf.tensor([[1, 2], [3, 4]], [2, 2]);

Try it Yourself »


Tensor Data Types

A Tensor can have the following data types:

  • bool
  • int32
  • float32 (default)
  • complex64
  • string

When you create a tensor, you can specify the datatype as the third parameter:

Example

const tensorA = tf.tensor([1, 2, 3, 4], [2, 2], "int32");
/*
Results:
tensorA.rank = 2
tensorA.shape = 2,2
tensorA.dtype = int32
*/

Try it Yourself »


Tensor Square

You can square a tensor using tensor.square():

Example

const tensorA = tf.tensor([1, 2, 3, 4]);

// Tensor Square
const tensorSquare = tensorA.square();

// Result [ 2, 6, 12, 20 ]

Try it Yourself »


Tensor Reshape

The number of elements in a tensor is the product of the sizes in the shape.

Since there can be different shapes with the same size, it is often useful to reshape a tensor to other shapes with the same size.

You can reschape a tensor using tensor.reshape():

Example

const tensorA = tf.tensor([[1, 2], [3, 4]]);
const tensorB = tensorA.reshape([4, 1]);

// Result: [ [1], [2], [3], [4] ]

Try it Yourself »


Retrieve Tensor Values

You can get the data behind the tensor using tensor.data():

Example

const tensorA = tf.tensor([[1, 2], [3, 4]]);
tensorA.data().then(data => display(data));

// Result: 1,2,3,4
function display(data) {
  document.getElementById("demo").innerHTML = data;
}

Try it Yourself »

You can get the array behind the tensor using tensor.array():

Example

const tensorA = tf.tensor([[1, 2], [3, 4]]);
tensorA.array().then(array => display(array));

// Result: 1,2
function display(array) {
  document.getElementById("demo").innerHTML = array[0];
}

Try it Yourself »