THE WORLD'S LARGEST WEB DEVELOPER SITE

Python Tutorial

Python HOME Python Intro Python Get Started Python Syntax Python Comments Python Variables Python Data Types Python Numbers Python Casting Python Strings Python Booleans Python Operators Python Lists Python Tuples Python Sets Python Dictionaries Python If...Else Python While Loops Python For Loops Python Functions Python Lambda Python Arrays Python Classes/Objects Python Inheritance Python Iterators Python Scope Python Modules Python Dates Python Math Python JSON Python RegEx Python PIP Python Try...Except Python User Input Python String Formatting

File Handling

Python File Handling Python Read Files Python Write/Create Files Python Delete Files

Python NumPy

NumPy Intro NumPy Getting Started NumPy Creating Arrays NumPy Array Indexing NumPy Array Slicing NumPy Data Types NumPy Copy vs View NumPy Array Shape NumPy Array Reshape NumPy Array Iterating NumPy Array Join NumPy Array Split NumPy Array Search NumPy Array Sort NumPy Array Filter NumPy Random NumPy ufunc

Machine Learning

Getting Started Mean Median Mode Standard Deviation Percentile Data Distribution Normal Data Distribution Scatter Plot Linear Regression Polynomial Regression Multiple Regression Scale Train/Test Decision Tree

Python MySQL

MySQL Get Started MySQL Create Database MySQL Create Table MySQL Insert MySQL Select MySQL Where MySQL Order By MySQL Delete MySQL Drop Table MySQL Update MySQL Limit MySQL Join

Python MongoDB

MongoDB Get Started MongoDB Create Database MongoDB Create Collection MongoDB Insert MongoDB Find MongoDB Query MongoDB Sort MongoDB Delete MongoDB Drop Collection MongoDB Update MongoDB Limit

Python Reference

Python Overview Python Built-in Functions Python String Methods Python List Methods Python Dictionary Methods Python Tuple Methods Python Set Methods Python File Methods Python Keywords Python Exceptions Python Glossary

Module Reference

Random Module Requests Module Math Module cMath Module

Python How To

Remove List Duplicates Reverse a String Add Two Numbers

Python Examples

Python Examples Python Compiler Python Exercises Python Quiz Python Certificate

Machine Learning - Scale


Scale Features

When your data has different values, and even different measurement units, it can be difficult to compare them. What is kilograms compared to meters? Or altitude compared to time?

The answer to this problem is scaling. We can scale data into new values that are easier to compare.

Take a look at the table below, it is the same data set that we used in the multiple regression chapter, but this time the volume column contains values in liters instead of cm3 (1.0 instead of 1000).

Car Model Volume Weight CO2
Toyota Aygo 1.0 790 99
Mitsubishi Space Star 1.2 1160 95
Skoda Citigo 1.0 929 95
Fiat 500 0.9 865 90
Mini Cooper 1.5 1140 105
VW Up! 1.0 929 105
Skoda Fabia 1.4 1109 90
Mercedes A-Class 1.5 1365 92
Ford Fiesta 1.5 1112 98
Audi A1 1.6 1150 99
Hyundai I20 1.1 980 99
Suzuki Swift 1.3 990 101
Ford Fiesta 1.0 1112 99
Honda Civic 1.6 1252 94
Hundai I30 1.6 1326 97
Opel Astra 1.6 1330 97
BMW 1 1.6 1365 99
Mazda 3 2.2 1280 104
Skoda Rapid 1.6 1119 104
Ford Focus 2.0 1328 105
Ford Mondeo 1.6 1584 94
Opel Insignia 2.0 1428 99
Mercedes C-Class 2.1 1365 99
Skoda Octavia 1.6 1415 99
Volvo S60 2.0 1415 99
Mercedes CLA 1.5 1465 102
Audi A4 2.0 1490 104
Audi A6 2.0 1725 114
Volvo V70 1.6 1523 109
BMW 5 2.0 1705 114
Mercedes E-Class 2.1 1605 115
Volvo XC70 2.0 1746 117
Ford B-Max 1.6 1235 104
BMW 2 1.6 1390 108
Opel Zafira 1.6 1405 109
Mercedes SLK 2.5 1395 120

It can be difficult to compare the volume 1.0 with the weight 790, but if we scale them both into comparable values, we can easily see how much one value is compared to the other.

There are different methods for scaling data, in this tutorial we will use a method called standardization.

The standardization method uses this formula:

z = (x - u) / s

Where z is the new value, x is the original value, u is the mean and s is the standard deviation.

If you take the weight column from the data set above, the first value is 790, and the scaled value will be:

(790 - 1292.23) / 238.74 = -2.1

If you take the volume column from the data set above, the first value is 1.0, and the scaled value will be:

(1.0 - 1.61) / 0.38 = -1.59

Now you can compare -2.1 with -1.59 instead of comparing 790 with 1.0.

You do not have to do this manually, the Python sklearn module has a method called StandardScaler() which returns a Scaler object with methods for transforming data sets.

Example

Scale all values in the Weight and Volume columns:

import pandas
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()

df = pandas.read_csv("cars2.csv")

X = df[['Weight', 'Volume']]

scaledX = scale.fit_transform(X)

print(scaledX)

Result:

Note that the first two values are -2.1 and -1.59, which corresponds to our calculations:

[[-2.10389253 -1.59336644]
 [-0.55407235 -1.07190106]
 [-1.52166278 -1.59336644]
 [-1.78973979 -1.85409913]
 [-0.63784641 -0.28970299]
 [-1.52166278 -1.59336644]
 [-0.76769621 -0.55043568]
 [ 0.3046118  -0.28970299]
 [-0.7551301  -0.28970299]
 [-0.59595938 -0.0289703 ]
 [-1.30803892 -1.33263375]
 [-1.26615189 -0.81116837]
 [-0.7551301  -1.59336644]
 [-0.16871166 -0.0289703 ]
 [ 0.14125238 -0.0289703 ]
 [ 0.15800719 -0.0289703 ]
 [ 0.3046118  -0.0289703 ]
 [-0.05142797  1.53542584]
 [-0.72580918 -0.0289703 ]
 [ 0.14962979  1.01396046]
 [ 1.2219378  -0.0289703 ]
 [ 0.5685001   1.01396046]
 [ 0.3046118   1.27469315]
 [ 0.51404696 -0.0289703 ]
 [ 0.51404696  1.01396046]
 [ 0.72348212 -0.28970299]
 [ 0.8281997   1.01396046]
 [ 1.81254495  1.01396046]
 [ 0.96642691 -0.0289703 ]
 [ 1.72877089  1.01396046]
 [ 1.30990057  1.27469315]
 [ 1.90050772  1.01396046]
 [-0.23991961 -0.0289703 ]
 [ 0.40932938 -0.0289703 ]
 [ 0.47215993 -0.0289703 ]
 [ 0.4302729   2.31762392]]

Run example »


Predict CO2 Values

The task in the Multiple Regression chapter was to predict the CO2 emission from a car when you only knew its weight and volume.

When the data set is scaled, you will have to use the scale when you predict values:

Example

Predict the CO2 emission from a 1.3 liter car that weighs 2300 kilograms:

import pandas
from sklearn import linear_model
from sklearn.preprocessing import StandardScaler
scale = StandardScaler()

df = pandas.read_csv("cars2.csv")

X = df[['Weight', 'Volume']]
y = df['CO2']

scaledX = scale.fit_transform(X)

regr = linear_model.LinearRegression()
regr.fit(scaledX, y)

scaled = scale.transform([[2300, 1.3]])

predictedCO2 = regr.predict([scaled[0]])
print(predictedCO2)

Result:

[107.2087328]

Run example »